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Abstract 

Pseudo-exhaustive testing uses the empirical observation 
that, for broad classes of software, a fault is likely trig-
gered by only a few variables interacting.  The method 
takes advantage of two relatively recent advances in soft-
ware engineering:  algorithms for efficiently generating 
covering arrays to represent software interaction test 
suites, and automated generation of test oracles using 
model checking.  An experiment with a module of the Traf-
fic Collision Avoidance System (TCAS) illustrates the ap-
proach testing pairwise through 6-way interactions.  We 
also outline current and future work applying the test 
methodology to a large real-world application, the Per-
sonal Identity Verification (PIV) smart card.   
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1. Introduction 
     Pseudo-exhaustive testing is an established concept in 
circuit design.  Several different approaches are available 
for pseudo-exhaustive testing in digital circuits, but all take 
advantage of the fact that, in general, outputs do not depend 
on all inputs, but on a subset of them.  Circuits are seg-
mented, either logically or physically, and each segment is 
tested exhaustively.  Applying the same scheme to software 
is problematic.  Unit testing concentrates on separate seg-
ments of the software, but exhaustive testing of individual 
units is still intractable.  In addition, interactions among 
functions may cause faults and need to be tested. 
     We propose an approach to pseudo-exhaustive testing 
for software.  Empirical observation suggests that the num-
ber of variables involved in software failures is relatively 
small, (i.e., on the order of 3 to 6), at least for some classes 
of software [14].  Therefore, if we know from experience 
that t or fewer variables are involved in failures for a par-
ticular application type and we can test all t-way (or t+1 
way) combinations of discrete variables, we have high con-
fidence that the application will function correctly.  Looked 
at another way, if we know in advance that all failures are 
triggered by t or fewer conditions, testing all t-way condi-
tions is in some sense equivalent to exhaustive testing.  For 
realistic applications it is not possible to test all t-way com-
binations of values for variables that may have 264 values 

each, so equivalence classes or other abstraction methods 
must be used.  This approach may thus be considered 
pseudo-exhaustive rather than truly exhaustive.   
     The methods we propose would not have been possible 
in the past, because even after partitioning variable values 
into equivalence classes, testing all t-way combinations for 
realistic software can require an exponential number of tests 
(tens to hundreds of thousands for much real world soft-
ware).  Faster algorithms for generating covering arrays 
[5],[12],[17], combined with methods of automatically gen-
erating complete test cases, including test oracles [1],[2], 
make it practical and cost-effective to do pseudo-exhaustive 
testing of software.  We describe this method and illustrate 
its application through an experiment with a module of the 
Traffic Collision Avoidance System (TCAS). This system 
has been used in previous studies of software test methods 
and provides a benchmark for evaluation of our pseudo-
exhaustive testing methodology.  
 

2. Combinatorial Testing 
      Methods from the field of design of experiments 
(DOE) have been applied to quality control problems in 
many engineering fields, including limited use for software 
[4],[8],[18], DOE seeks to maximize the amount of infor-
mation gained in an experiment with an economical num-
ber of tests.  Originally used in agricultural experiments in 
the 1920s, DOE methods were set up to produce balanced 
coverage of independent variables.  For instance, an ex-
periment might involve six varieties of seed with five fer-
tilizers and five soil types, using an orthogonal array in 
which every combination occurs exactly once[10]. Early 
applications of these methods to software were limited be-
cause of two significant differences between software and 
the problems that DOE was originally designed for - needs 
for balanced coverage and the number of variables in-
volved – and a lack of adequate tools for generating neces-
sary combinations.  
     Constructing tests that provide combinatorial coverage 
is a hard problem that has been studied for more than two 
centuries.  Software testing is different from previous ap-
plications. For instance, software does not have the same 
need for balance between parameters:  if the combination 

1ρ = 3v and 4ρ  = 1v  occurs in multiple test cases, there 



may be some wasted effort but testing soundness is not af-
fected.  Software testing typically has a vast number of pa-
rameters and corresponding values.  Unlike the application 
to agriculture, software may have parameters with more 
than five or six values.  Abstraction methods, such as 
equivalence classes, may reduce the number of values, but 
the number of variable and value combinations will still be 
extremely large.   
     Covering arrays are combinatorial objects that can be 
generated to represent interaction test suites.  A covering 
array, ),,;( vktNCAλ , is an N x k array.  In every N x t su-
barray, each t-tuple occurs at least λ times. In our applica-
tion, t is the strength of the coverage of interactions, k is 
the number of components (degree), and v is the number 
of symbols for each component (order). In all of our dis-
cussions, we treat only the case when λ = 1, (i.e. that every 
t-tuple must be covered at least once).  The efficient con-
struction of objects to represent these test suites (called 
covering arrays) is an NP-hard problem, but advances 
have been made within the past decade [5],[17].   
     Software testing using DOE methods, often referred to 
as combinatorial testing (or interaction testing), has been 
advocated as an efficient means of providing a high level 
of coverage of the input domain with a small number of 
tests, typically limited to pairwise combinations 
[8],[9],[12].  For example, consider a device that has 20 
inputs, each with 10 settings (or 10 equivalence classes if 
the variables are continuous), for a total of 2010 combina-
tions of settings. The few hundred test cases that can be 
built under most development budgets would cover an in-
finitesimally small proportion (< 1510− ) of the possible 
cases. But the number of pairs of settings is small, and 
since every test case must have a value for each of the ten 
variables, more than one pair can be included in a single 
test case. Only 180 – 200 test cases [8] are required for 
pairwise coverage of the example above with 2010  combi-
nations of settings.  
     Several authors have demonstrated the effectiveness of 
pairwise testing for software.  A test set that covers all 
possible pairs of variable values can typically detect 50% 
to 75% of the faults in a program [4],[9],[26].  In other 
work we found 100% of faults detectable by a relatively 
low degree of interaction, typically 4-way to 6-way 
combinations  [14],[15],[27].  Advances in covering array 
algorithms make the generation of all 4-way to 6-way 
combinations tractable for many realistic testing problems 
     Even using covering arrays, a large number of 
combinations will be required, but far fewer than fully 
exhaustive testing.  For the small example used in this 
experiment, exhaustive coverage would have required 
230,400 combinations, but all 4-way combinations were 
covered with 1,450, all 5-way with 4,347, and all 6-way 
with 10,902.  Clearly, tests for such a large number of 

combinations could not be constructed manually.  How-
ever, the application of combinatorial methods with model 
checking can produce test oracles and more than 17,000 
test cases can be generated.  These tests can be run with a 
few minutes of processing time and a few hours of labor.  
In the next section we describe the model checking 
approach to test case generation, followed by a review of 
the proof-of-concept experiment.  We also discuss results 
on how combinatorial designs can be efficiently combined 
with model checking for software testing.    

3. Test Generation Using Model Checking 
     One practical problem in software testing is determining 
the correct output for a given set of input variable values, 
generally referred to as the test oracle problem.  If human 
intervention is required to check outputs, the number of test 
cases will be limited to a few hundred at most, so some 
form of automation is essential for thorough testing.  One 
approach to automated generation of test oracles is model 
checking [1],[6], which uses a formal specification to com-
pute expected output for input values and events.  
     Model checking is a formal technique based on state 
exploration. Input to a model checker has two parts. First is 
a state machine defined in terms of variables, initial values 
for the variables, environmental assumptions, and a 
description of the conditions under which variables may 
change value. Second is temporal logic expressions over 
states and execution paths. Conceptually, a model checker 
visits all reachable states and verifies that the temporal 
logic expressions are satisfied over all paths. If an 
expression is not satisfied, the model checker attempts to 
generate a counterexample in the form of a sequence of 
states. 
     A common logic for model checking is the branching-
time Computation Tree Logic (CTL), which extends 
propositional logic with temporal operators. For example, a 
CTL formula AG safe means that all reachable states are 
safe, and AG (request -> AX response) means 
that request is always followed by response in the 
next step. 
     In SMV [20], a CTL symbolic model checker, a specifi-
cation consists of one or more modules. One module, 
named main, is the top-level module. Figure 1 is an SMV 
example. Variables d, b, and f are inputs, e and a are inter-
mediate variables. The statement init(e) := 0; sets e to 0 
initially. The next value of e is 1 if the guard f = On is true, 
otherwise it is 0. The output is the variable out, which may 
be Low or High. Its value is High if a is greater than 10, 
otherwise it is Low. The SPEC clause states that if f is On, it 
is possible to get to some state where out is High. We often 
drop the keyword SPEC when the meaning is clear from the 
context. 



     Model checking can be applied to test generation and 
test coverage evaluation [1],[6]. In both uses, one first 
chooses a test criterion, that is, decides on a philosophy 
about what properties of a specification must be exercised 
to constitute a thorough test. 
MODULE main 

VAR 

d: 0..5; b: 0..11; 

f: {On, Off}; 

out: {Low, High}; 

a: 0..16; e: 0..1; 

ASSIGN 

init(e) := 0; 

next(e) := case 

f = On : 1; 

1 : 0; 

esac; 

a := e * d + b; 

out := case 

a > 10 : High; 

1 : Low; 

esac; 

SPEC AG (f = On -> EF out = High) 
Figure 1. An SMV example. 

     One applies the chosen test criterion to the specification 
to derive test requirements, (i.e., a set of individual proper-
ties to be tested). To use a model checker, these require-
ments must be represented as temporal logic formulas [2]. 
To generate tests, the test criterion is applied to yield nega-
tive requirements, that is, requirements that are considered 
satisfied if the corresponding temporal logic formulas are 
inconsistent with the state machine. For instance, if the cri-
terion is state coverage, the negative requirements are that 
the machine is never in state 1, never in state 2, etc. 
     When the model checker finds that a requirement is in-
consistent, it produces a counterexample. Again, in the case 
of state coverage, the counterexamples would have stimulus 
that puts the machine in state 1 (if it is reachable), another 
to put the machine in state 2, and so on.  Several test criteria 
have been proposed, including branch coverage [11] and 
mutation adequacy [1]. We use t-way coverage as a test 
criterion. Different methods can be used to derive the test 
requirements for t-way coverage; we present some possi-
bilities in the Discussion section. 
 

4. TCAS Experiment 
     Our experiment used a module of Traffic Collision Avoidance 
System (TCAS). The module is part of a set of C programs that 
has been used in other evaluations of software testing methods 
[13], [22],[24].   

     The program came with 41 faulty versions derived by 
manually seeding realistic faults. Two thirds of the faulty 
versions have single changes such as replacing a constant 
with another constant, replacing >= with >, or dropping a 
condition. The rest involve either multiple changes or more 
complex changes. These faulty versions served as the basis 
of our evaluation.  The program has 12 input variables 
specifying parameters of own aircraft and another aircraft 
and one output variable, alt_sep, a resolution advisory to 
maintain safe altitude separation between the two aircraft. 
The program computes intermediate values and prints 
alt_sep to the standard output.  A model of the program was 
written in SMV. The model, together with the C program, 
was used in evaluations of specification-based mutation 
testing methods [22]. In this project, we used the SMV 
model to produce counterexamples. 
     To make model checking feasible, the domains of input 
variables were partitioned into equivalence classes and only 
one representative value from every equivalence class was 
chosen.  The TCAS model has three Boolean and nine 
scalar input parameters, shown in Figure 2. The output 
variable can take one of three values. 
 
Cur_Vertical_Sep : {299, 300, 601}; 

High_Confidence : boolean; 

Two_of_Three_Reports_Valid : boolean;    
Own_Tracked_Alt   : {1, 2}; 

Other_Tracked_Alt : {1, 2}; 

Own_Tracked_Alt_Rate : {600,601 }; 

Alt_Layer_Value : 0..3; 

Up_Separation : 
{0,399,400,499,500,639,640,739,740,840 }; 

Down_Separation : 
{0,399,400,499,500,639,640,739,740,840}; 

Other_RAC : { NO_INTENT, DO_NOT_CLIMB, 
DO_NOT_DESCEND }; 

Other_Capability : {TCAS_TA, OTHER}; 

Climb_Inhibit : boolean; 
Figure 2.  TCAS variables. 

 
     There are 230,400 possible combinations of these 
variables, but covering array methods make it possible to 
cover all 6-way combinations with only 10,902 input 
combinations, and all 5-way combinations with only 4,220 
combinations (see Table 1). 
 

Table 1. Combinations produced for TCAS example  

2-way 3-way 4-way 5-way 6-way 

100 405 1375 4220 10902 

 



5. Discussion:  Integrating Combinatorial 
Methods with Model Checking  

     While model checking has been used for test generation 
in a number of previous studies, it had not been integrated 
with combinatorial testing prior to this work.  One of the 
significant questions we investigated was how input 
variable combinations should be used to generate tests.  
Given assertions of the form AG(P -> AX(R)), and t-
way variable combinations, v1 & v2 & ... & vt, 
counterexamples can be produced in several ways.  At least 
three schemes are possible.  Method 1 simply combines the 
input variable combination (the expression v1 & v2 & 
... & vt) in a conjunction with the original predicate P: 
 
Method 1. Use  AG(v1 & v2 & ... & vt & P  
-> AX !(R)) 

     A disadvantage of this method is that as the interaction 
level is increased, the variable combinations v1 ... vt  will 
include more variables in the conjunction, because there are 
fewer “don’t care” conditions (those with no specified value 
for a particular variable in a combination).  As a result, 
some of the v1 ... vt may result in v1 & v2 & ... & vt & P 
evaluating to 0, preventing the model checker from finding 
a counterexample  (since 10 ≡→ Q for any Q , the 
expression becomes trivially true and no counterexample is 
possible). 
     The problems of method 1 can be prevented by 
replacing the consequent of the assertion with 0 (or !1), and 
removing P.  This causes the model checker to find 
counterexamples for all of the variable combinations.   But 
because many of the combinations include “don’t care” 
conditions, and the model checker makes non-deterministic 
choices if a variable value is not asserted, the 
counterexamples produced may not cover all values of R. 
 
Method 2. Use AG(v1 & v2 & ... & vt  
-> AX !(1)) 

Method 2 can be strengthened by including assertions for 
each possible value of expression R. This forces the model 
checker to attempt to produce counterexamples for each, 
not just one, value of R.   
Method 3. Use  AG(v1 & v2 & ... & vt  
-> AX !(R)) 
     The last assertion means that for the chosen input vari-
able combination, R is always false on the next step. So 
SMV will choose any counterexample where the combina-
tion of input variables will result in satisfaction of R. This is 
sufficient for the SMV example used in this paper, since it 
simply computes the output based on the inputs. However, 
reactive systems have a state, and the output depends not 
only on the inputs but also on the current state.  For the case 
of reactive systems, we can strengthen Method 3 by includ-

ing a particular state in the conjunction of input variables. 
Given a set of inputs produced by combinatorial testing, the 
model checker will produce a counterexample that leads to 
the chosen state, applies the inputs, and produces the ex-
pected outputs. 
     While Method 3 ensures the production of all result 
values, it does not guarantee that tests for t-tuples at an 
interaction coverage strength of t will be a subset of tests 
for interaction level t+1.  Thus in some cases, faults 
detected by a particular interaction level may not be 
detected by a higher level, because of “don’t care” 
conditions.  For “don’t care” conditions, we do not assert 
any value for the variable, so the model checker will non-
deterministically select a value.  In other words, tests for t-
way interaction are not necessarily a subset of tests for 
(t+1)-way interactions 
     Table 2 shows the number of input combinations and 
test cases produced for TCAS using pairwise through 6-way 
interaction levels. There is not a one-to-one mapping 
between input combinations and test cases in Table 2 
because counterexamples are produced for each of the 
possible outputs, and there are so many combinations with  
"don't care" conditions, SMV can produce more 
counterexamples than there are combinations.  For 
example, a boolean input 010XXX could be mapped to two 
different results, since the model checker will keep trying 
until it finds values for the "X" - "don't care" - values that 
will produce a counterexample.  So an input of 010XXX 
could produce a test case with output value UP and another 
test with output value DOWN, since the X's will get filled 
in with values that produce the two different 
counterexamples.  This is not a significant problem in 
practice since they are both valid test cases. The model 
checker may also produce test cases that are redundant in 
the sense that one is a prefix of another.  This output could 
be filtered easily, but the small number of extra test cases 
we generated only cost a few seconds of extra computation 
time.    As can be seen from Table 2, the percentage of 
redundant tests declines rapidly as a factor as the interaction 
coverage increases.  Of 17,470 tests generated, 17,039, or 
97.5%, are unique. 

Table 2. Test cases produced for  
input variable combinations 

 2-way 3-way 4-way 5-way 6-way 

Comb. 100 405 1375 4220 10902 

Cases 156 461 1450 4309 11094 

 
     Counterexamples produced by the model checker were 
post-processed into test harness code and executed on the 
41 versions of the TCAS module.  We later determined that 
two pairs of the TCAS versions were equivalent, and a third 
had a seeded source code error that did not result in a fault 



in the executable.  (The correct version has an array of 
length 4 that is length 3 in the faulty version, but the array is 
followed by empty space in memory so an execution fault 
did not occur; compiled with gcc ver. 3.4.4 under CygWin, 
on Windows XP.)  Results are shown in Figure 3 and Table 
3.   

Table 3. Fault detection rate by interaction level 

 2-way 3-way 4-way 5-way 6-way

Number  
detected 

20 28 34 36 37

Cumulative  
detected 

20 28 34 38 38

Detection  
Rate 

53% 74% 89% 100% 100%
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Figure 3.  Fault detection rate by interaction level 

 

     The percentages of errors per failure triggering fault 
interaction (FTFI) level shown in Figure 3 are comparable 
to those we found by analyzing failure reports in large 
systems [14],[15],[27]. However, the faults-per-FTFI curve 
grows more slowly for this example than for the real-world 
software previously tested, suggesting that the seeded errors 
were relatively difficult.   As shown in Figure 4, the number 
of tests per detected error approximately doubles with each 
interaction level (up to 5-way, which detected 100%), but 
since tests are produced and analyzed automatically, the 
cost in terms of time is relatively unaffected.  With realistic 
software, it is inevitable that more human intervention will 
be required to review tests and results, so testing to high 
FTFI levels is likely to have significantly higher costs. 

6. Scaling Up:  A Realistic Application 
     Methods described in this paper will be applied to three 
modules of the Personal Identity Verification (PIV) smart 

card, with 43, 26, and 29 variables respectively.  Our 
current version of the extended IPO algorithm can generate 
combinations up to 4-way interactions in a few hours for 
each of these modules.  For larger problems, we have 
developed an algorithm that can generate covering arrays 
for 50 – 500 parameters, depending on the level of 
interaction [16].  The algorithm is suboptimal in that it 
produces more than the minimal number of tests, but the 
increment beyond optimal is small, and additional tests 
have relatively small cost in execution time, since they are 
generated automatically. 

Tests per error

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

2 way 3 way 4 way 5 way 6 way

Fault Interaction level
Te

st
s Tests per error

 
Figure 4.  Number of tests per detected error 

 

      The second component of the method, model checking, 
is also subject to scaling problems.  Once input 
combinations have been produced, test generation and 
execution can be distributed across any number of 
machines, since there are no dependencies between tests.  
Using 100 machines it is practical to generate and execute 
106 tests in a few weeks, a level of effort consistent with 
most development budgets. 
     In addition we are investigating the use of combinatorial 
methods with the TVEC test generation tool [3], [7], which 
is already being used to produce tests for the PIV card.  
TVEC is efficient and appears to be suitable for integration 
with combinatorial methods.   

7. Conclusions 
     This work serves as a proof of concept for integrating 
combinatorial testing with model checking to provide 
automated specification based testing. One valuable result 
from the project was determining the most efficient way to 
integrate combinatorial testing with model checking.   
Results suggest that this approach is efficient and can be 
effective. 
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